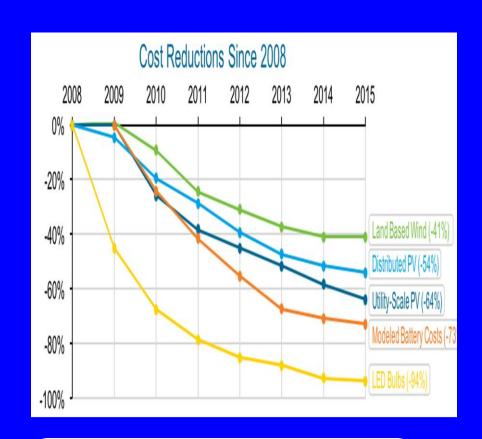

The Clean Electric Grid and the Growth of Energy Storage

IMRE GYUK, DIRECTOR, ENERGY STORAGE RESEARCH, DOE-OE

The grid used to be Simple and Deterministic!

FOSSIL TRANSMISSION LOAD

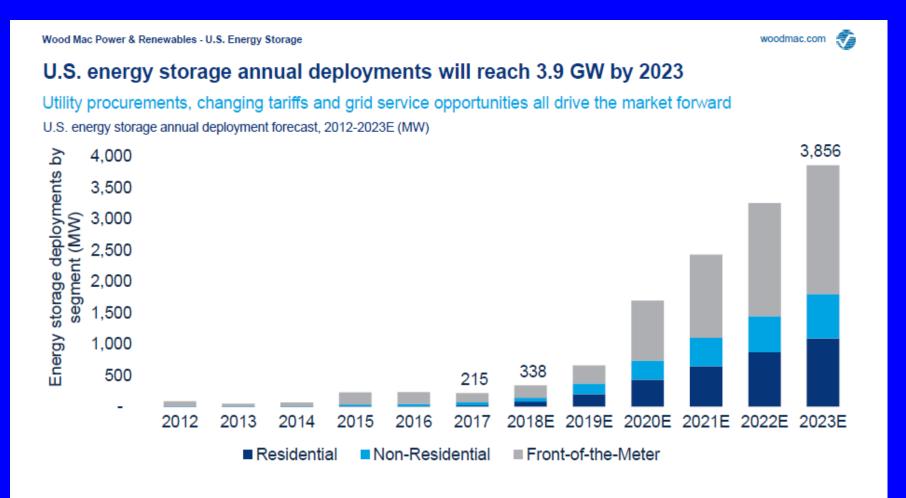
The grid has become stochastic!



Changes are rapid and substantial

RENEWABLES

DISTRIBUTED GENERATION


ELECTRIFICATION

STORAGE

DOE 2016

Energy Storage has become a Resounding Success!

Source: Wood Mackenzie Power & Renewables 21

Incumbent Lithium-Ion Technology:

Sourcing, Ecological, and Sociological Issues

Safety, Reliability,

Re-Use, Recycling, Disposal

STORAGE REQUIREMENTS

- COST
- ADEQUATE SOURCING
- SAFETY
- RELIABILITY
- DURATION
- ENVIRONMENTAL ACCEPTANCE
- RECYCLABILITY / REUSE

Safety must be of Paramount Concern

An Urgent Situation!

30 states, Washington, D.C., and 3 territories have adopted Renewable Portfolio Standards, while 7 states and 1 territory have set Renewable Energy Goals.

→ This requires Longer Duration Storage!

8 Hours – 12 Hours – Days – Seasons

High Penetration of Renewables Needs bigger and longer lasting Storage!

Cost Goals for Focus Technologies

Manufactured at scale

Li-ion Batteries	(cells)	\$100/kWh
-------------------------	---------	-----------

V/V Flow Batteries (stack+PE) \$300/kWh

Zinc Manganese Oxide (Zn-MnO₂)

2 Electron System \$ 50/kWh

Low Temperature Na / Na-ion

based Batteries \$ 60/kWh

Aqueous Soluble Organic (ASO)

Redox Flow Batteries (stack+PE) \$125/kWh

Advanced Lead Acid \$ 35/kWh

On the Horizon:

Vehicle to Grid – Fleets: School bus. Postal, Military

"Better" Lithium: Innolith (Alevo) / Non-Lithium Technologies Vanadium Redox, Zinc-Bromine, Zinc-Manganese, Iron-Chlorine (ESS), Ambri, Sodium (NGK),

Non-Battery Technologies:

Cement Blocks, Railroads, CAES, Pumped Hydro

Thermal Systems (Ice, PCMs, Aesthus, Malta, Liquid Air)

Long – Duration, Long Term Storage (8hrs, 12hrs, days)
Business Case? "Frozen" Electrolytes, Hybrid Systems,

Hydrogen, Ammonia, etc.

Now and in Future. **Energy Storage** should be in the Toolbox of every Utility!